中国电力 ›› 2024, Vol. 57 ›› Issue (6): 225-234.DOI: 10.11930/j.issn.1004-9649.202306029
王明伟1(), 刘天天2, 高琦1, 王春伟1, 沈吉勇1, 刘守富1, 何锁盈2(
)
收稿日期:
2023-06-09
出版日期:
2024-06-28
发布日期:
2024-06-25
作者简介:
王明伟(1984—),男,从事冷却塔节能节水技术研究,E-mail:wangmingwei@casen-group.com基金资助:
Mingwei WANG1(), Tiantian LIU2, Qi GAO1, Chunwei WANG1, Jiyong SHEN1, Shoufu LIU1, Suoying HE2(
)
Received:
2023-06-09
Online:
2024-06-28
Published:
2024-06-25
Supported by:
摘要:
为了解决机械通风空冷塔夏季机组出力不足,无法满足冷却需求的问题,设计了一种带有填料蒸发预冷进风的机械通风空冷塔,并利用Matlab编写计算程序,仿真研究了填料厚度、环境温度和环境湿度对所设计空冷塔运行性能的影响规律及其节能效果。研究表明:在环境温度为26 ℃,相对湿度为57%条件下,厚300 mm的CELdek7060填料蒸发预冷进风的预冷效果最好,空冷塔的排热率可提高20.57%;空冷塔的排热性能随环境温度升高而降低,且存在一个临界点温度为13.5 ℃,只有当环境温度高于此温度,填料蒸发预冷进风才可提升空冷塔的排热性能;在环境温度、相对湿度分别为35 ℃和57%时,填料蒸发预冷系统可使空冷塔的排热率提高96.96%,使出塔水温进一步降低2.80 ℃;在环境相对湿度为0%、环境温度为26 ℃时,填料蒸发预冷系统可使空冷塔的排热率提高81.14%,出塔水温进一步降低6.81 ℃。单塔每年节能收益约为13.84万元,具有良好的经济效益。
王明伟, 刘天天, 高琦, 王春伟, 沈吉勇, 刘守富, 何锁盈. 填料蒸发预冷进风的机械通风空冷塔设计及其运行性能[J]. 中国电力, 2024, 57(6): 225-234.
Mingwei WANG, Tiantian LIU, Qi GAO, Chunwei WANG, Jiyong SHEN, Shoufu LIU, Suoying HE. Design and Operating Performance of Mechanical Draft Dry Cooling Tower Pre-cooled with Wet Medium[J]. Electric Power, 2024, 57(6): 225-234.
管的布 置间距 S1/mm | 翅片 管长 LT/m | 管外径 Do/mm | 管内径 Di/mm | 翅片 外径 Df/mm | 翅片 厚度 δf/mm | 翅片 高度 Hf/mm | 翅片 间距 Y/mm | |||||||
59 | 12 | 25 | 23.4 | 57 | 0.4 | 16 | 2.5 |
表 1 翅片管的相关参数
Table 1 Parameters of finned tube
管的布 置间距 S1/mm | 翅片 管长 LT/m | 管外径 Do/mm | 管内径 Di/mm | 翅片 外径 Df/mm | 翅片 厚度 δf/mm | 翅片 高度 Hf/mm | 翅片 间距 Y/mm | |||||||
59 | 12 | 25 | 23.4 | 57 | 0.4 | 16 | 2.5 |
塔高 H9/m | 风机高度 H6/m | 塔入口高度 H3/m | 塔宽 B/m | 气室高度 Hpl/m | 换热器上 游高度H4/m | 风机直径 dF/m | 风机转速 NF/rpm | V型换热器 夹角θ/(°) | 管束数 nb | 管排数 nr | 每排管数 ntr | 管流程 np | ||||||||||||
17 | 15.6 | 4 | 12.5 | 1.2 | 14.4 | 9.145 | 120 | 60 | 8 | 4 | 50 | 4 |
表 2 填料蒸发预冷进风空冷塔的设计参数
Table 2 Design parameters of dry cooling tower with wet medium pre-cooling inlet air system
塔高 H9/m | 风机高度 H6/m | 塔入口高度 H3/m | 塔宽 B/m | 气室高度 Hpl/m | 换热器上 游高度H4/m | 风机直径 dF/m | 风机转速 NF/rpm | V型换热器 夹角θ/(°) | 管束数 nb | 管排数 nr | 每排管数 ntr | 管流程 np | ||||||||||||
17 | 15.6 | 4 | 12.5 | 1.2 | 14.4 | 9.145 | 120 | 60 | 8 | 4 | 50 | 4 |
图 5 不同厚度填料对空冷塔排热性能和通风性能的影响
Fig.5 The influence of different thicknesses wet media on the heat rejection and ventilation performance of dry cooling tower
图 6 有/无填料蒸发预冷系统对空冷塔的排热性能的影响(环境相对湿度为57%)
Fig.6 The influence of with/without wet medium pre-cooling system on heat rejection performance of mechanical draft dry cooling tower (ambient humidity of 57%)
图 7 有/无填料蒸发预冷系统对空冷塔的通风性能的影响(环境相对湿度为57%)
Fig.7 The influence of with/without wet medium pre-cooling system on ventilation performance of mechanical draft dry cooling tower (ambient humidity of 57%)
图 8 有/无填料蒸发预冷系统对空冷塔的排热性能的影响(环境温度为26 ℃)
Fig.8 The influence of with/without wet medium pre-cooling system on heat rejection performance of mechanical draft dry cooling tower (ambient temperature of 26 ℃)
图 9 有/无填料蒸发预冷系统对空冷塔的通风性能的影响(环境温度为26 ℃)
Fig.9 The influence of with/without wet medium pre-cooling system on ventilation performance of mechanical draft dry cooling tower (ambient temperature of 26 ℃)
类型 | 出塔水温/ ℃ | 水蒸发量/ (kg·s–1) | 风机功率/ kW | |||
填料预冷的机械通风空冷塔 | 30.0 | 0.78 | 33.92 | |||
机械通风空冷塔 | 30.0 | 0 | 95.69 |
表 3 有/无填料蒸发预冷系统时空冷塔的耗水量和风机功率
Table 3 Water consumption and fan power of mechanical draft dry cooling tower with/without wet medium pre-cooling system
类型 | 出塔水温/ ℃ | 水蒸发量/ (kg·s–1) | 风机功率/ kW | |||
填料预冷的机械通风空冷塔 | 30.0 | 0.78 | 33.92 | |||
机械通风空冷塔 | 30.0 | 0 | 95.69 |
1 | 国家发展改革委. 关于印发《绿色高效制冷行动方案》的通知(发改环资〔2019〕1054号)[A].2019. |
2 |
刘海潮, 邵双全, 张海南, 等. 间接蒸发冷却技术研究现状[J]. 制冷与空调, 2019, 19 (8): 14- 22.
DOI |
LIU Haichao, SHAO Shuangquan, ZHANG Hainan, et al. Research status of indirect evaporative cooling technology[J]. Refrigeration and Air-Conditioning, 2019, 19 (8): 14- 22.
DOI |
|
3 | 贾明晓, 胡三季, 李昊, 等. 冷凝式消雾节水冷却塔消雾节水性能试验研究[J]. 中国电力, 2020, 53 (2): 180- 184. |
JIA Mingxiao, HU Sanji, LI Hao, et al. Experimental study on performance of plume abatement and water-saving cooling tower with condensate method[J]. Electric Power, 2020, 53 (2): 180- 184. | |
4 |
贾明晓, 胡三季, 樊志军, 等. 1000 MW机组大型海水冷却塔热力性能试验研究[J]. 中国电力, 2016, 49 (10): 28- 32.
DOI |
JIA Mingxiao, HU Sanji, FAN Zhijun, et al. Experimental research on thermal performance of large seawater cooling tower used in 1 000 MW power unit[J]. Electric Power, 2016, 49 (10): 28- 32.
DOI |
|
5 |
孙铁柱, 王鑫, 王祺, 等. 干燥地区间接-直接蒸发冷却设备的适用性分析[J]. 棉纺织技术, 2022, 50 (10): 21- 25.
DOI |
SUN Tiezhu, WANG Xin, WANG Qi, et al. Applicability analysis of indirect-direct evaporative cooling equipment in dry area[J]. Cotton Textile Technology, 2022, 50 (10): 21- 25.
DOI |
|
6 | 武茁苗, 黄翔, 史东旭, 等. 不同运行模式下间接蒸发冷却空调的能耗分析[J]. 西安工程大学学报, 2022, 36 (4): 84- 91. |
WU Zhuomiao, HUANG Xiang, SHI Dongxu, et al. Energy consumption analysis of indirect evaporative cooling air conditioning under different operating modes[J]. Journal of Xi’an Polytechnic University, 2022, 36 (4): 84- 91. | |
7 |
齐慧卿, 高德申, 韩强, 等. 冷却塔内冷却水特性三维数值模拟研究[J]. 中国电力, 2017, 50 (3): 88- 91.
DOI |
QI Huiqing, GAO Deshen, HAN Qiang, et al. Three-dimensional numerical simulation of cooling water characteristics[J]. Electric Power, 2017, 50 (3): 88- 91.
DOI |
|
8 | 邹庆江, 张义江, 郭民臣, 等. 采用蒸发式冷却器的间接空冷系统的热经济性分析[J]. 中国电力, 2018, 51 (1): 164- 170. |
ZOU Qingjiang, ZHANG Yijiang, GUO Minchen, et al. Thermal economic analyses of a power unit using indirect dry cooling system with an evaporative cooler[J]. Electric Power, 2018, 51 (1): 164- 170. | |
9 |
SANAYE S, AMANI M, AMANI P. 4E modeling and multi-criteria optimization of CCHPW gas turbine plant with inlet air cooling and steam injection[J]. Sustainable Energy Technologies and Assessments, 2018, 29, 70- 81.
DOI |
10 |
RAZA H M U, SULTAN M, BAHRAMI M, et al. Experimental investigation of evaporative cooling systems for agricultural storage and livestock air-conditioning in Pakistan[J]. Building Simulation, 2021, 14 (3): 617- 631.
DOI |
11 |
GAO M, ZHANG L, WANG N N, et al. Influence of non-uniform layout fillings on thermal performance for wet cooling tower[J]. Applied Thermal Engineering, 2016, 93, 549- 555.
DOI |
12 | 徐梦菲. 机械通风干湿联合冷却塔的换热性能及其运行调控研究[D]. 济南: 山东大学, 2022. |
XU Mengfei. Study on the heat transfer performance and operation regulation of mechanical ventilation, dry and wet combined cooling tower [D]. Jinan: Shandong University, 2022. | |
13 |
HE S Y, XU Y, ZHANG G H, et al. Selection of wetted media for pre-cooling of air entering natural draft dry cooling towers[J]. Applied Thermal Engineering, 2017, 114, 857- 863.
DOI |
14 |
HE S Y, LI Y, WANG M W, et al. Investigation on the control mechanism of spray pre-cooling the inlet air of natural draft dry cooling tower[J]. Applied Thermal Engineering, 2022, 217, 119186.
DOI |
15 | LIU T T, PANG H M, HE S Y, et al. Evaporative cooling applied in thermal power plants: a review of the state-of-the-art and typical case studies[J]. Fluid Dynamics & Materials Processing, 2023, 19 (9): 2229- 2266. |
16 |
龙国庆, 闫明暄, 何锁盈, 等. 淡水与海水对蒸发冷却性能影响的试验研究[J]. 流体机械, 2021, 49 (4): 79- 84.
DOI |
LONG Guoqing, YAN Mingxuan, HE Suoying, et al. Experimental study on the evaporative cooling performance using freshwater and seawater[J]. Fluid Machinery, 2021, 49 (4): 79- 84.
DOI |
|
17 | 何锁盈, 孙奉仲, 高明, 等. 基于填料蒸发预冷原理的自然通风干式冷却塔夏天运行效率的优化[J]. 太阳能学报, 2017, 38 (11): 3022- 3028. |
HE Suoying, SUN Fengzhong, GAO Ming, et al. Performance optimization of natural draft dry cooling tower using wetted-medium evaporative pre-cooling[J]. Acta Energiae Solaris Sinica, 2017, 38 (11): 3022- 3028. | |
18 | KRÖGER D G. Air-cooled heat exchangers and cooling towers: thermal-flow performance evaluation and design[M]. USA: PennWell Corp., 2004. |
19 | 中华人民共和国住房和城乡建设部. 机械通风冷却塔工艺设计规范: GB/T 50392—2016[S]. 北京: 中国计划出版社, 2017. |
20 | 尾花英朗. 热交换器设计手册[M]. 徐忠权, 译. 北京: 石油工业出版社, 1981. |
21 |
RAWANGKUL R, KHEDARI J, HIRUNLABH J, et al. Performance analysis of a new sustainable evaporative cooling pad made from coconut coir[J]. International Journal of Sustainable Engineering, 2008, 1 (2): 117- 131.
DOI |
22 |
FRANCO A, VALERA D L, PEÑA A, et al. Aerodynamic analysis and CFD simulation of several cellulose evaporative cooling pads used in Mediterranean greenhouses[J]. Computers and Electronics in Agriculture, 2011, 76 (2): 218- 230.
DOI |
23 |
FRANCO A, VALERA D L, MADUEÑO A, et al. Influence of water and air flow on the performance of cellulose evaporative cooling pads used in Mediterranean greenhouses[J]. Transactions of the ASABE, 2010, 53 (2): 565- 576.
DOI |
24 |
HE S Y, GUAN Z Q, GURGENCI H, et al. Experimental study of film media used for evaporative pre-cooling of air[J]. Energy Conversion and Management, 2014, 87, 874- 884.
DOI |
[1] | 李满, 韩敬钦, 李陆军, 赵顺安. 660 MW机组间接空冷主辅共塔方案影响分析[J]. 中国电力, 2020, 53(5): 155-163. |
[2] | 邹庆江, 张义江, 郭民臣, 储德全. 采用蒸发式冷却器的间接空冷系统的热经济性分析[J]. 中国电力, 2018, 51(1): 164-170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||