[1] IEC. Wind energy generation systems-Part 25-1: communications for monitoring and control of wind power plants-overall description of principles and models: IEC 61400-25-1[S]. IEC, 2017. [2] IEC. Communication networks and systems for power utility automation-part 90-7: object models for power converters in distributed energy resources (DER) systems: IEC 61850-90-7[S]. IEC, 2017. [3] IEC. Communication networks and systems for power utility automation-part 7-420: basic communication structure-Distributed energy resources and distribution automation logical nodes: IEC 61850-7-420[S]. IEC, 2021. [4] 郝晓光, 耿少博, 任江波, 等. 智能变电站二次电缆回路建模方法研究与应用[J]. 电力科学与技术学报, 2020, 35(4): 161–168 HAO Xiaoguang, GENG Shaobo, REN Jiangbo, et al. Research and application of modeling method of secondary cable loop in intelligent substation[J]. Journal of Electric Power Science and Technology, 2020, 35(4): 161–168 [5] 戴志辉, 鲁浩,刘媛,等. 基于改进D-S证据理论的智能站保护二次回路故障诊断方法[J].电力系统保护与控制, 2020, 48(9): 59-67. DAI Zhihui, LU Hao, LIU Yuan, et al. A fault diagnosis method for the secondary circuits of protection systems in smart substations based on improved D-S evidence theory[J]. Power System Protection and Control, 2020, 48(9): 59-67. [6] 姚浩, 习伟, 陈浩敏, 等. 基于SoC的单芯片保护装置架构设计优化[J]. 电力科学与技术学报, 2021, 36(5): 20-27. YAO Hao, XI Wei, CHEN Haomin, et al. Structure optimization of intelligent substation relay protection device based on SoC[J]. Journal of Electric Power Science and Technology, 2021, 36(5): 20-27. [7] KUSH N S, AHMED E, BRANAGAN M, et al. Poisoned GOOSE: exploiting the GOOSE protocol[C]// 12 th Australasian Information Security Conference, January 20-23, 2014, Auckland, New Zealand: 17–22. [8] STROBEL M, WIEDERMANN N, ECKERT C. Novel weaknesses in IEC 62351 protected smart grid control systems[C]// 7 th IEEE International Conference on Smart Grid Communications, November 6-9, 2016, Sydney, Australia: 266–270. [9] 王珍珍. 基于IEC 61850 Ed2.0的电力自动化设备一致性测试方法研究[D]. 南京: 东南大学, 2017. WANG Zhenzhen. Research on the comformance testing method of power utility automation devices based on IEC 61850 Ed2.0[D]. Nanjing: Southeast University, 2017. [10] 任泽众, 郑晗, 张嘉元, 等. 模糊测试技术综述[J]. 计算机研究与发展, 2021, 58(5): 944–963 REN Zezhong, ZHENG Han, ZHANG Jiayuan, et al. A review of fuzzing techniques[J]. Journal of Computer Research and Development, 2021, 58(5): 944–963 [11] 熊琦, 彭勇, 伊胜伟, 等. 工控网络协议Fuzzing测试技术研究综述[J]. 小型微型计算机系统, 2015, 36(3): 497–502 XIONG Qi, PENG Yong, YI Shengwei, et al. Survey on the fuzzing technology in industrial network protocols[J]. Journal of Chinese Computer Systems, 2015, 36(3): 497–502 [12] BYRES E J, HOFFMAN D, KUBE N. On shaky ground-a study of security vulnerabilities in control protocols[C]//5 th International Topical Meeting on Nuclear Plant Instrumentation Controls, and Human Machine Interface Technology, November 12-16, 2006, Albuquerque, USA: 782–788. [13] Profuzz: Simple PROFINET fuzzer based on scapy [EB/OL]. [2012-12-6]. https://github.com/HSASec/ProFuzz. [14] DEVARAJAN G. Unraveling SCADA protocols: using Sulleyfuzzer, presented at the DefCon 15 Hacking Conference [EB/OL]. [2015-06-21]. http://www.defcon.org/html/defcon-15/dc15-speakers.html. [15] 伊胜伟, 张翀斌, 谢丰, 等. 基于Peach的工业控制网络协议安全分析[J]. 清华大学学报(自然科学版), 2017, 57(1): 50–54 YI Shengwei, ZHANG Chongbin, XIE Feng, et al. Security analysis of industrial control network protocols based on Peach[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(1): 50–54 [16] 黄影, 邹颀伟, 范科峰. 基于Fuzzing测试的工控网络协议漏洞挖掘技术[J]. 通信学报, 2018, 39(增刊2): 181–188 HUANG Ying, ZOU Qiwei, FAN Kefeng. Fuzzing test-based vulnerability mining for industrial control network protocol[J]. Journal on Communications, 2018, 39(S2): 181–188 [17] 张亚丰, 洪征, 吴礼发, 等. 基于范式语法的工控协议Fuzzing测试技术[J]. 计算机应用研究, 2016, 33(8): 2433–2439 ZHANG Yafeng, HONG Zheng, WU Lifa, et al. Form-syntax based Fuzzing method for industrial control protocols[J]. Application Research of Computers, 2016, 33(8): 2433–2439 [18] KIM S J, SHON T. Field classification-based novel fuzzing case generation for ICS protocols[J]. The Journal of Supercomputing, 2018, 74(9): 4434–4450. [19] 向騻, 赵波, 纪祥敏, 等. 一种基于改进Fuzzing架构的工业控制设备漏洞挖掘框架[J]. 武汉大学学报(理学版), 2013, 59(5): 411–415 XIANG Shuang, ZHAO Bo, JI Xiangmin, et al. Vulnerability detection framework of industrial control equipment based on improved fuzzing[J]. Journal of Wuhan University (Natural Science Edition), 2013, 59(5): 411–415 [20] 赖英旭, 杨凯翔, 刘静, 等. 基于模糊测试的工控网络协议漏洞挖掘方法[J]. 计算机集成制造系统, 2019, 25(9): 2265–2279 LAI Yingxu, YANG Kaixiang, LIU Jing, et al. Vulnerability mining method for industrial control network protocol based on fuzz testing[J]. Computer Integrated Manufacturing Systems, 2019, 25(9): 2265–2279 [21] 工控漏洞挖掘平台-威努特[EB/OL]. (2020-02-03)[2020-04-01]. http://www.winicssec.com/product/d30.html. VHunter IVM [EB/OL]. (2020-02-03)[2020-04-01]. http://www.winicssec.com/product/d30.html. [22] Mu test suite [EB/OL]. (2018-02-01)[2018-03-01]. http://www.mudynamics.com/products/mu-test-suite.html. [23] 窦仁晖, 任辉, 姚志强, 等. 自主可控变电站站控层服务协议设计[J]. 电网技术: 1–8 [2021-09-16]. https://doi.org/10.13335/j.1000-3673.pst.2020.1784. DOU Renhui, REN Hui, YAO Zhiqiang, et al. Design of autonomous and controllable substation control level service protocol[J]. Power System Technology: 1–8[2021-09-16]. https://doi.org/10.13335/j.1000-3673.pst.2020.1784.
|