[1] 熊齐, 李尊朝, 焦琛, 等. 采用峰值电感电流控制的直流-直流电压转换器[J]. 西安交通大学学报, 2018, 52(12): 128–136 XIONG Qi, LI Zunchao, JIAO Chen, et al. A DC-DC converter based on inductor-peak-current control[J]. Journal of Xi'an Jiaotong University, 2018, 52(12): 128–136 [2] 赵凯, 王闯, 李尊朝, 等. 结合平衡和滤波技术抑制GaN电源转换器的电磁干扰[J]. 西安交通大学学报, 2016, 50(2): 38–42, 131 ZHAO Kai, WANG Chuang, LI Zunchao, et al. A method for suppressing electromagnetic interference of GaN converter utilizing balance and filter technologies[J]. Journal of Xi'an Jiaotong University, 2016, 50(2): 38–42, 131 [3] 陈文艺, 孟爱华, 刘成龙. 微型振动能量收集器的研究现状及发展趋势[J]. 微纳电子技术, 2013, 50(11): 715–720 CHEN Wenyi, MENG Aihua, LIU Chenglong. Research status and developing trend of micro vibration-based energy harvesters[J]. Micronanoelectronic Technology, 2013, 50(11): 715–720 [4] 荣训, 陈志敏, 曹广忠. 微弱能量收集电路技术的研究现状与发展趋势[J]. 传感器与微系统, 2015, 34(9): 6–10 RONG Xun, CHEN Zhimin, CAO Guangzhong. Research status and developing trend of ultra low energy harvesting circuit technology[J]. Transducer and Microsystem Technologies, 2015, 34(9): 6–10 [5] 许卓, 杨杰, 燕乐, 等. 微型振动式能量采集器研究进展[J]. 传感器与微系统, 2015, 34(2): 9–12 XU Zhuo, YANG Jie, YAN Le, et al. Research progress on micro vibration energy harvesters[J]. Transducer and Microsystem Technologies, 2015, 34(2): 9–12 [6] 陈绍炜, 王子, 魏刚. 基于压电能量收集技术的无线传感器节点设计[J]. 计算机测量与控制, 2014, 22(3): 952–955 CHEN Shaowei, WANG Zi, WEI Gang. Design of wireless sensor node based on piezoelectric energy harvesting technology[J]. Computer Measurement & Control, 2014, 22(3): 952–955 [7] 沙山克·普里亚(S. priya), 丹尼尔·茵曼(D. J. inman). 能量收集技术[M]. 黄见秋, 黄庆安, 译. 南京: 东南大学出版社, 2011. [8] 王青萍, 王骐, 姜胜林. 压电能量收集器的研究现状[J]. 电子元件与材料, 2012, 31(2): 72–76 WANG Qingping, WANG Qi, JIANG Shenglin. Research status of piezoelectric energy harvester[J]. Electronic Components and Materials, 2012, 31(2): 72–76 [9] QIU Jinhao, JIANG Hao, JI Hongli, et al. Comparison between four piezoelectric energy harvesting circuits[J]. 中国高等学校学术文摘·机械工程, 2009, 4(2): 153–159. [10] AKTAKKA E E, PETERSON R L, NAJAFI K. A self-supplied inertial piezoelectric energy harvester with power-management IC[C]// IEEE International Solid-State Circuits Conference (ISSCC). San Francisco, CA, USA, 2011: 120–121. [11] LU S H, BOUSSAID F. A self-controlled piezoelectric energy harvesting interface circuit[C]// IEEE International Conference on Circuits and Systems. Kuala Lumpur, Malaysia, 2013: 71–74. [12] 杨帆, 唐祯安, 徐爱宝, 等. 基于P-SSHI接口电路的高效压电能量收集芯片设计[J]. 仪表技术与传感器, 2016(11): 27–30, 66 YANG Fan, TANG Zhen’an, XU Aibao, et al. Efficient piezoelectric energy harvesting chip based on P-SSHI interface circuit[J]. Instrument Technique and Sensor, 2016(11): 27–30, 66 [13] WU L, DO X D, LEE S G, et al. A self-powered and optimal SSHI circuit integrated with an active rectifier for piezoelectric energy harvesting[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2017, 64(3): 537–549. [14] RAMADASS Y K, CHANDRAKASAN A P. An efficient piezoelectric energy-harvesting interface circuit using a bias-flip rectifier and shared inductor[C]// 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, 2009: 296–297. [15] RAMADASS Y K, CHANDRAKASAN A P. An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor[J]. IEEE Journal of Solid-State Circuits, 2010, 45(1): 189–204. [16] FAN S Q, ZHAO L M, WEI R, GENG L, PHILIP F X L. An ultra-low quiescent current power management ASIC with MPPT for vibrational energy harvesting[C]// IEEE International Symposium on Circuits and Systems (ISCAS). Baltimore, MD, USA, 2017: 1–4. [17] FAN S Q, WEI R, Zhao L M, YANG X, GENG L, PHILIP F X L. An ultralow quiescent current Power management system with maximum power point tracking (MPPT) for batteryless wireless sensor applications[J]. IEEE Transactions on Power Electronics, 2018, 33(9): 7326–7337. [18] LU S H, BOUSSAID F, LAW M K. Efficient parallel-SSHI interface circuit for piezoelectric energy harvesting[C]// IEEE 11th International New Circuits and Systems Conference. Paris, 2013: 1–4. [19] LU S H, BOUSSAID F. A highly efficient P-SSHI rectifier for piezoelectric energy harvesting[J]. IEEE Transactions on Power Electronics, 2015, 30(10): 5364–5369. [20] SANCHEZ D A, LEICHT J, JODKA E, et al. 21.2 A 4μW-to-1mW parallel-SSHI rectifier for piezoelectric energy harvesting of periodic and shock excitations with inductor sharing, cold start-up and up to 681% power extraction improvement[C]// IEEE International Solid-State Circuits Conference. San Francisco, CA, USA, 2016: 366–367. [21] DINI M, FILIPPI M, ROMANI A, TARTAGNI M, BBTTARELV, RICOTTI G. A 40 nA/source energy harvesting power converter for multiple and heterogeneous source[C]// IEEE European Solid State Circuits Conference (ESSCIRC). Venice Lido, Italy, 2014: 259–262. [22] DINI M, ROMANI A, FILIPPI M, et al. A nanopower synchronous charge extractor IC for low-voltage piezoelectric energy harvesting with residual charge inversion[J]. IEEE Transactions on Power Electronics, 2016, 31(2): 1263–1274. [23] LALLART M, WU W J, YAN L J, et al. Inductorless synchronized switch harvesting using a piezoelectric oscillator[J]. IEEE Transactions on Power Electronics, 2020, 35(3): 2585–2594. [24] CHEN Z, LAW M, MAK P, KI W, MARTINS R P. A 1.7 mm2 inductorless fully integrated flipping-capacitor rectifier (FCR) for piezoelectric energy harvesting with 483% power-extraction enhancement[C]// IEEE International Solid-State Circuits Conference (ISSCC), 2017: 372–373. [25] CHEN Z Y, LAW M K, MAK P I, et al. Fully integrated inductor-less flipping-capacitor rectifier for piezoelectric energy harvesting[J]. IEEE Journal of Solid-State Circuits, 2017, 52(12): 3168–3180.
|