[1] 袁华璐, 裴蕴智, 靳鹏飞. 基于光纤传感的非覆冰期输电线路状态监测技术研究[J]. 功能材料与器件学报, 2020, 26(1): 31–34 YUAN Hualu, PEI Yunzhi, JIN Pengfei. Research of condition monitoring of transmission lines in non-ice coating period based on optical fiber sensing[J]. Journal of Functional Materials and Devices, 2020, 26(1): 31–34 [2] DJOKIC B, SO E. An optically isolated hybrid two-stage current transformer for measurements at high voltage[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(4): 1204–1207. [3] ISHIGAKI M, FAFARD S, MASSON D P, et al. A new optically-isolated power converter for 12 V gate drive power supplies applied to high voltage and high speed switching devices[C]//2017 IEEE Applied Power Electronics Conference and Exposition (APEC). Tampa, FL, USA. IEEE, 2017: 2312–2316. [4] ZHANG X, LI H, BROTHERS J A, et al. A gate drive with power over fiber-based isolated power supply and comprehensive protection functions for 15-kV SiC MOSFET[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(3): 946–955. [5] DE NAZARE F V B, WERNECK M M. Hybrid optoelectronic sensor for current and temperature monitoring in overhead transmission lines[J]. IEEE Sensors Journal, 2012, 12(5): 1193–1194. [6] ROSOLEM J B, BASSAN F R, PENZE R S, et al. Quantitative and qualitative monitoring system for switchgear with full electrical isolation using fiber-optic technology[J]. IEEE Transactions on Power Delivery, 2015, 30(3): 1449–1457. [7] 袁静. 基于PCB-Rogowski线圈的激光供电式电流互感器的研究[D]. 秦皇岛: 燕山大学, 2012 YUAN Jing. Study on laser-powered current transformer based on PCB-rogowski coil[D]. Qinhuangdao: Yanshan University, 2012. [8] 何友忠. 高压在线监测设备供电电源的研究[D]. 重庆: 重庆大学, 2011 HE Youzhong. Study on power supply of on-line monitoring equipment for high voltage equipment[D]. Chongqing: Chongqing University, 2011. [9] 邱红辉, 李立伟, 段雄英, 等. 用于激光供能电流互感器的低功耗光电传输系统[J]. 电力系统自动化, 2006, 30(20): 72–76 QIU Honghui, LI Liwei, DUAN Xiongying, et al. Opt-electric transmission system of low power consumption for optically powered electronic current transformers[J]. Automation of Electric Power Systems, 2006, 30(20): 72–76 [10] 王宇, 孟令雯, 汤汉松, 等. ECT采集单元积分回路的暂态特性改进及其检测系统研发[J]. 电力系统保护与控制, 2021, 49(10): 98–104 WANG Yu, MENG Lingwen, TANG Hansong, et al. Improvement of transient characteristics and development of a testing system of an integration circuit in ECT acquisition unit[J]. Power System Protection and Control, 2021, 49(10): 98–104 [11] 艾绍贵, 杨黎明, 张汉花, 等. 基于矩阵束算法的故障电流过零点预测研究[J]. 智慧电力, 2020, 48(2): 98–103 AI Shaogui, YANG Liming, ZHANG Hanhua, et al. Fault current zero crossing prediction using matrix pencil algorithm[J]. Smart Power, 2020, 48(2): 98–103 [12] 刘晨蕾, 潘卓洪, 文习山, 等. 一种基于碳化硅IGBT的可控型直流偏磁抑制方法[J]. 电力科学与技术学报, 2019, 34(1): 67–73 LIU Chenlei, PAN Zhuohong, WEN Xishan, et al. A controllable DC bias suppression device based on the SiC IGBT[J]. Journal of Electric Power Science and Technology, 2019, 34(1): 67–73 [13] ALONSO-Á LVAREZ D, WILSON T, PEARCE P, et al. Solcore: a multi-scale, Python-based library for modelling solar cells and semiconductor materials[J]. Journal of Computational Electronics, 2018, 17(3): 1099–1123. [14] CORLESS R M, GONNET G H, HARE D E G, et al. On the Lambert W function[J]. Advances in Computational Mathematics, 1996, 5(1): 329–359. [15] GAO X K, CUI Y, HU J J, et al. Lambert W-function based exact representation for double diode model of solar cells: comparison on fitness and parameter extraction[J]. Energy conversion and Management, 2016, 127: 443–460. [16] NELDER J A, MEAD R. A simplex method for function minimization[J]. The Computer Journal, 1965, 7(4): 308–313. [17] Ngspice: open source spice simulator [CP]. (2020-08-01) [2020-09-09] http://ngspice.sourceforge.net/. [18] BETT A W, DIMROTH F, LOCKENHOFF R, et al. Ⅲ–V solar cells under monochromatic illumination[C]//2008 33rd IEEE Photovoltaic Specialists Conference. San Diego, CA, USA. IEEE, 2008: 1–5. [19] KING R R, BHUSARI D, BOCA A, et al. Band gap-voltage offset and energy production in next-generation multijunction solar cells[J]. Progress in Photovoltaics: Research and Applications, 2011, 19(7): 797–812. [20] ZHAO Y M, SUN Y R, HE Y, et al. Design and fabrication of six-volt vertically-stacked GaAs photovoltaic power converter[J]. Scientific Reports, 2016, 6: 38044. [21] YORK M C A, FAFARD S. High efficiency phototransducers based on a novel vertical epitaxial heterostructure architecture (VEHSA) with thin p/n junctions[J]. Journal of Physics D: Applied Physics, 2017, 50(17): 173003. [22] OLIVA E, DIMROTH F, BETT A W. GaAs converters for high power densities of laser illumination[J]. Progress in Photovoltaics: Research and Applications, 2008, 16(4): 289–295. [23] FAFARD S, PROULX F, YORK M C A, et al. High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%[J]. Applied Physics Letters, 2016, 109(13): 131107. [24] SCHUBERT J, OLIVA E, DIMROTH F, et al. High-voltage GaAs photovoltaic laser power converters[J]. IEEE Transactions on Electron Devices, 2009, 56(2): 170–175. [25] FAFARD S, YORK M C A, PROULX F, et al. Ultrahigh efficiencies in vertical epitaxial heterostructure architectures[J]. Applied Physics Letters, 2016, 108(7): 071101. [26] HELMERS H, ARMBRUSTER C, VON RAVENSTEIN M, et al. 6-W optical power link with integrated optical data transmission[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 7904–7909.
|