中国电力 ›› 2014, Vol. 47 ›› Issue (6): 43-48.DOI: 10.11930/j.issn.1004-9649.2014.6.43.5

• 电网 • 上一篇    下一篇

一种新的基于陷波器的变电站噪声控制法

姜鸿羽1, 马宏忠1, 姜宁2, 王春宁2, 李凯2   

  1. 1. 河海大学 能源与电气学院,江苏 南京 211100;
    2. 南京供电公司,江苏 南京 210008
  • 修回日期:2014-03-12 出版日期:2014-06-18 发布日期:2015-12-08
  • 作者简介:姜鸿羽(1989—),男,江苏淮安人,硕士研究生,从事电力设备状态检测与故障诊断研究。E-mail: hy13218057510@163.com

A Novel Notch Filter Based Method for Substation Noise Control

JIANG Hong-yu1, MA Hong-zhong1, JIANG Ning2, WANG Chun-ning2, LI Kai2   

  1. 1. College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China;
    2. Nanjing Power Supply Company, Nanjing 210008, China
  • Revised:2014-03-12 Online:2014-06-18 Published:2015-12-08
  • About author:This work is supported by State Grid Corporation headquarters key technology projects in 2011 (2011-0810-2251)
  • Supported by:
    国家电网公司总部2011年重点科技项目(2011-0810-2251)

摘要: 针对变电站噪声传统控制方法的缺陷,提出一种将人工神经网络与陷波器相结合用于控制变电站噪声的新方法。首先对自适应有源控制的对象变电站噪声进行理论分析;之后分析了2种传统的自适应有源噪声控制方法,即基于陷波器的有源控制法和基于人工神经网络的有源控制法。考虑到这2种方法的优缺点,利用人工神经网络算法代替陷波器中的最小均方(LMS)算法。最后,分别用这3种方法对变电站实测噪声信号进行处理,结果表明所提的方法不仅具有更好的稳定性,而且对变电站噪声有更好的抑制效果。

关键词: 变电站噪声, 陷波器, 人工神经网络, 自适应消噪

Abstract: For deficiencies of conventional passive methods for substation noise control, a new method of substation noise control which combines artificial neural networks and notch filter is presented in this paper. Firstly, substation noise is theoretically analyzed. Then, two conventional adaptive and active noise control methods, i.e. notch filter based active control method and artificial neural network based active control method, are analyzed. Taking into account of the characteristics of these two methods, an artificial neural network algorithm is used instead of Least Mean Square(LMS) algorithm of notch filter. Finally, these three methods are comparatively evaluated by using actual noise signals from substation. The results show that the proposed method has better stability and suppression effects of substation noise compared with other two conventional methods mentioned.

Key words: substation noise, notch filter, artificial neural network, adaptive noise control

中图分类号: