[1] 白宏坤, 刘军会, 尹硕, 等. 河南省电力经济关系演进态势研究[J]. 中国电力, 2017, 50(12): 16–21 BAI Hongkun, LIU Junhui, YIN Shuo, et al. Research on the evolution trend of electricity and economy relations in Henan Province[J]. Electric Power, 2017, 50(12): 16–21 [2] 邢欣. 增强经济发展韧性 促进持续回暖增长: 基于西安市电力与经济大数据的关联分析[J]. 宏观经济管理, 2021(2): 70–76,83 XING Xin. Enhance the resilience of economic development and promote sustained economic recovery and growth—based on correlation analyses of the electric and economic big data of Xi'an City[J]. Macroeconomic Management, 2021(2): 70–76,83 [3] 张旭, 刘文君, 王建渊, 等. 新冠疫情期间陕西学校暑期短期电力负荷大数据分析[J]. 电网与清洁能源, 2020, 36(11): 100–105 ZHANG Xu, LIU Wenjun, WANG Jianyuan, et al. A short-term summer power load analysis of schools during summer holidays after COVID-19[J]. Power System and Clean Energy, 2020, 36(11): 100–105 [4] 王圆圆, 白宏坤, 李文峰, 等. 能源大数据应用中心功能体系及应用场景设计[J]. 智慧电力, 2020, 48(3): 15–21,29 WANG Yuanyuan, BAI Hongkun, LI Wenfeng, et al. Function system and application scenario design of energy big data application center[J]. Smart Power, 2020, 48(3): 15–21,29 [5] 杨红磊, 徐鸥洋, 王金丽, 等. 基于投入产出法的电力产业前后向关联效应分析[J]. 电力科学与技术学报, 2015, 30(4): 113–118 YANG Honglei, XU Ouyang, WANG Jinli, et al. Analysis on forward and backward correlation effects of electricity industry based on the input-output method[J]. Journal of Electric Power Science and Technology, 2015, 30(4): 113–118 [6] 何永秀, 朱登军, 李艳, 等. 基于增量投入产出分析的电力经济关系研究[J]. 中国电力, 2007, 40(9): 23–25 HE Yongxiu, ZHU Dengjun, LI Yan, et al. Research on the relationship between electric power and economy based on increment input-output model[J]. Electric Power, 2007, 40(9): 23–25 [7] 张秋雁, 宋强, 张俊玮, 等. 基于扩展面板大数据的电力经济特征提取新方法[J]. 电网与清洁能源, 2021, 37(2): 64–70,78 ZHANG Qiuyan, SONG Qiang, ZHANG Junwei, et al. A novel feature extraction method in power economic assessment research based on extraction panel data[J]. Power System and Clean Energy, 2021, 37(2): 64–70,78 [8] 刘生龙, 高宇宁, 胡鞍钢. 电力消费与中国经济增长[J]. 产业经济研究, 2014(3): 71–80 LIU Shenglong, GAO Yuning, HU Angang. Electricity consumption and China's economic growth[J]. Industrial Economics Research, 2014(3): 71–80 [9] 田世明, 龚桃荣, 黄小庆, 等. 基于电力大数据的地区E-GDP值预测[J]. 电力自动化设备, 2019, 39(11): 198–204 TIAN Shiming, GONG Taorong, HUANG Xiaoqing, et al. Forecasting regional E-GDP value using power big data[J]. Electric Power Automation Equipment, 2019, 39(11): 198–204 [10] 彭放, 祁亚茹, 任俊达, 等. 基于电力大数据对工业增加值现时预测研究: 基于LSTM的分析[J]. 价格理论与实践, 2021(7): 110–114 PENG Fang, QI Yaru, REN Junda, et al. Research on nowcasting industrial added value based on power big data—analysis based on LSTM[J]. Price:Theory & Practice, 2021(7): 110–114 [11] 王圆圆, 魏胜民, 田春筝, 等. 新常态下河南电网投资的经济效应研究[J]. 电力科学与技术学报, 2017, 32(1): 157–163 WANG Yuanyuan, WEI Shengmin, TIAN Chunzheng, et al. Study on investment economic effect under new normal of Henan power grid[J]. Journal of Electric Power Science and Technology, 2017, 32(1): 157–163 [12] 王宝, 杨敏, 李周, 等. 安徽省黑色金属冶炼及压延加工业电力经济关系及用电量预测[J]. 中国电力, 2018, 51(5): 179–184 WANG Bao, YANG Min, LI Zhou, et al. The relationship between economy and the electricity consumption and power forecasting in black metal smelting and rolling processing industry in Anhui Province[J]. Electric Power, 2018, 51(5): 179–184 [13] 郑蔚. 福建省制造业空间集聚水平测度与评价[J]. 经济地理, 2012, 32(7): 74–80 ZHENG Wei. Spatial agglomeration level measurement and evaluation of manufacturing in Fujian Province[J]. Economic Geography, 2012, 32(7): 74–80 [14] 国务院关于印发《中国制造2025》的通知[EB/OL]. (2015-05-08) [2015-05-08]. http://www.gov.cn/zhengce/content/2015-05/19/content_9784.htm. [15] 王欢芳, 李密, 宾厚. 我国包装产业区域集聚水平的测度[J]. 统计与决策, 2018, 34(9): 147–149 [16] 刘丽钦, 王荧. 制造业空间集聚水平测算及其影响因素分析: 以福建省为例[J]. 福建农林大学学报(哲学社会科学版), 2017, 20(3): 70–77 LIU Liqin, WANG Ying. Spatial agglomeration level measurement of manufacturing industry and its influencing factors analysis—taking Fujian as an example[J]. Journal of Fujian Agriculture and Forestry University (Philosophy and Social Sciences), 2017, 20(3): 70–77 [17] 刘汉初, 周侃, 卢明华. 重点开发区域工业空间格局、集疏差异及影响机制: 以福建沿海地区为例[J]. 人文地理, 2020, 35(1): 85–94 LIU Hanchu, ZHOU Kan, LU Minghua. Industrial spatial pattern, agglomeration difference and impact mechanism of development-prioritized zone: a case study of coastal area in Fujian Province[J]. Human Geography, 2020, 35(1): 85–94 [18] 关伟, 满谦宁, 许淑婷. 辽宁省制造业及其关联行业集聚格局与效应分析[J]. 地理研究, 2019, 38(8): 1979–1992 GUAN Wei, MAN Qianning, XU Shuting. The cluster pattern and effect analysis of Liaoning manufacturing industry and its related industries[J]. Geographical Research, 2019, 38(8): 1979–1992 [19] 李师源, 黄茂兴. 制造业集聚的空间结构与效率分析: 以福建省为例[J]. 亚太经济, 2016(1): 112–118 LI Shiyuan, HUANG Maoxing. The spatial structure and efficiency analysis of manufacturing agglomeration in Fujian Province[J]. Asia-Pacific Economic Review, 2016(1): 112–118 [20] 苏东水. 产业经济学[M]. 2版. 北京: 高等教育出版社, 2005: 98-101. [21] ELLISON G, GLAESER E L. Geographic concentration in US manufacturing industries: a dartboard approach[J]. Journal of Political Economy, 1997, 105(5): 889–927. [22] ELLISON G, GLAESER E L, KERR W R. What causes industry agglomeration? evidence from coagglomeration patterns[J]. American Economic Review, 2010, 100(3): 1195–1213. [23] DEVEREUX M P, GRIFFITH R, SIMPSON H. The geographic distribution of production activity in the UK[J]. Regional Science and Urban Economics, 2004, 34(5): 533–564. [24] “十三五”以来福建省工业和信息化实现较快发展[EB/OL]. (2020-11-16) [2020-11-16]. http://gxt.fujian.gov.cn/xw/jxyw/202011/t20201116_5434259.htm. [25] 福建省人民政府关于印发福建省“十四五”制造业高质量发展专项规划的通知[EB/OL]. (2021-07-07) [2021-07-07]. http://gxt.fujian.gov.cn/zc/zxzcfg/sjzcfg/202107/t20210707_5641856.htm. [26] 沈豫, 黄夏楠, 刘林, 等. 基于格兰杰因果与ARDL模型的高能耗产业用电量预测[J/OL]. 电力科学与技术学报: 1–8[2021-12-23]. http://kns.cnki.net/kcms/detail/43.1475.TM.20211210.1931.002.html. SHEN Yu, HUANG Xianan, LIU Lin, et al. Research on forecasting electricity consumption of high-energy-consuming industries based on Granger causality and ARDL model[J/OL]. Journal of Electric Power Science and Technology: 1–8[2021-12-23]. http://kns.cnki.net/kcms/detail/43.1475.TM.20211210.1931.002.html.
|