[1] 蒲天骄, 谈元鹏, 彭国政, 等. 电力领域知识图谱的构建与应用[J]. 电网技术, 2021, 45(6): 2080–2091 PU Tianjiao, TAN Yuanpeng, PENG Guozheng, et al. Construction and application of knowledge graph in the electric power field[J]. Power System Technology, 2021, 45(6): 2080–2091 [2] 张晓华, 冯长有, 王永明, 等. 电网调控机器人设计思路[J]. 电力系统自动化, 2019, 43(13): 1–8 ZHANG Xiaohua, FENG Changyou, WANG Yongming, et al. Design ideas of robotic dispatcher for power grid[J]. Automation of Electric Power Systems, 2019, 43(13): 1–8 [3] 郑伟彦, 杨勇, 卢家驹, 等. 面向配电网知识图谱的配电调度文本实体链接方法[J]. 电力系统保护与控制, 2021, 49(4): 111–117 ZHENG Weiyan, YANG Yong, LU Jiaju, et al. Entity linking method of distribution dispatching texts for a distribution network knowledge graph[J]. Power System Protection and Control, 2021, 49(4): 111–117 [4] 余建明, 王小海, 张越, 等. 面向智能调控领域的知识图谱构建与应用[J]. 电力系统保护与控制, 2020, 48(3): 29–35 YU Jianming, WANG Xiaohai, ZHANG Yue, et al. Construction and application of knowledge graph for intelligent dispatching and control[J]. Power System Protection and Control, 2020, 48(3): 29–35 [5] 鲁华永, 袁越, 郭泓佐, 等. 基于正则表达式的变电站集中监控信息解析方法[J]. 电力系统自动化, 2017, 41(5): 78–83 LU Huayong, YUAN Yue, GUO Hongzuo, et al. Regular expressions based information analytic method for substation centralized monitoring[J]. Automation of Electric Power Systems, 2017, 41(5): 78–83 [6] 杨锦锋, 于秋滨, 关毅, 等. 电子病历命名实体识别和实体关系抽取研究综述[J]. 自动化学报, 2014, 40(8): 1537–1562 YANG Jinfeng, YU Qiubin, GUAN Yi, et al. An overview of research on electronic medical record oriented named entity recognition and entity relation extraction[J]. Acta Automatica Sinica, 2014, 40(8): 1537–1562 [7] 李慧林, 柴玉梅, 孙穆祯. 面向文本命名实体识别的深层网络模型[J]. 小型微型计算机系统, 2019, 40(1): 50–57 LI Huilin, CHAI Yumei, SUN Muzhen. Deep network model for text named entity recognition[J]. Journal of Chinese Computer Systems, 2019, 40(1): 50–57 [8] WILLIAMS R J, ZIPSER D. A learning algorithm for continually running fully recurrent neural networks[J]. Neural Computation, 1989, 1(2): 270–280. [9] 王朱君, 王石, 李雪晴, 等. 基于深度学习的事件因果关系抽取综述[J]. 计算机应用, 2021, 41(5): 1247–1255 WANG Zhujun, WANG Shi, LI Xueqing, et al. Review of event causality extraction based on deep learning[J]. Journal of Computer Applications, 2021, 41(5): 1247–1255 [10] 陈斌, 周勇, 刘兵. 基于卷积双向长短期记忆网络的事件触发词抽取[J]. 计算机工程, 2019, 45(1): 153–158 CHEN Bin, ZHOU Yong, LIU Bing. Event trigger word extraction based on convolutional bidirectional long short term memory network[J]. Computer Engineering, 2019, 45(1): 153–158 [11] 吴文涛, 李培峰, 朱巧明. 基于混合神经网络的实体和事件联合抽取方法[J]. 中文信息学报, 2019, 33(8): 77–83 WU Wentao, LI Peifeng, ZHU Qiaoming. Joint extraction of entities and events by a hybrid neural network[J]. Journal of Chinese Information Processing, 2019, 33(8): 77–83 [12] 潘璋, 黄德根. 事件要素注意力与编码层融合的触发词抽取研究[J]. 小型微型计算机系统, 2021, 42(4): 673–677 PAN Zhang, HUANG Degen. Research on trigger word extraction based on the fusion of event argument attention and encoder layer[J]. Journal of Chinese Computer Systems, 2021, 42(4): 673–677 [13] 李明节, 陶洪铸, 许洪强, 等. 电网调控领域人工智能技术框架与应用展望[J]. 电网技术, 2020, 44(2): 393–400 LI Mingjie, TAO Hongzhu, XU Hongqiang, et al. The technical framework and application prospect of artificial intelligence application in the field of power grid dispatching and control[J]. Power System Technology, 2020, 44(2): 393–400 [14] 陶洪铸, 翟明玉, 许洪强, 等. 适应调控领域应用场景的人工智能平台体系架构及关键技术[J]. 电网技术, 2020, 44(2): 412–419 TAO Hongzhu, ZHAI Mingyu, XU Hongqiang, et al. Architecture and key technologies of artificial intelligence platform oriented for power grid dispatching and control application scenarios[J]. Power System Technology, 2020, 44(2): 412–419 [15] 王福贺, 海威, 张越, 等. 电网线路故障处置智能调度机器人研究及应用[J]. 电气自动化, 2021, 43(3): 1–3,23 WANG Fuhe, HAI Wei, ZHANG Yue, et al. Research and application of intelligent dispatching robots handling grid line faults[J]. Electrical Automation, 2021, 43(3): 1–3,23 [16] 佟佳弘, 武志刚, 管霖, 等. 电力调度文本的自然语言理解与解析技术及应用[J]. 电网技术, 2020, 44(11): 4148–4156 TONG Jiahong, WU Zhigang, GUAN Lin, et al. Power dispatching text analysis and application based on natural language understanding[J]. Power System Technology, 2020, 44(11): 4148–4156 [17] 蒋晨, 王渊, 胡俊华, 等. 基于深度学习的电力实体信息识别方法[J]. 电网技术, 2021, 45(6): 2141–2149 JIANG Chen, WANG Yuan, HU Junhua, et al. Power entity information recognition based on deep learning[J]. Power System Technology, 2021, 45(6): 2141–2149 [18] 丁禹, 尚学伟, 米为民. 基于深度学习的电网调控文本知识抽取方法[J]. 电力系统自动化, 2020, 44(24): 161–168 DING Yu, SHANG Xuewei, MI Weimin. Deep learning based knowledge extraction method for text of power grid dispatch and control[J]. Automation of Electric Power Systems, 2020, 44(24): 161–168 [19] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. https://arxiv.org/abs/1810.04805 [20] 田园, 原野, 刘海斌, 等. 基于BERT预训练语言模型的电网设备缺陷文本分类[J]. 南京理工大学学报, 2020, 44(4): 446–453 TIAN Yuan, YUAN Ye, LIU Haibin, et al. BERT pre-trained language model for defective text classification of power grid equipment[J]. Journal of Nanjing University of Science and Technology, 2020, 44(4): 446–453 [21] ZHANG W T, JIANG S H, ZHAO S, et al. A BERT-BiLSTM-CRF model for Chinese electronic medical records named entity recognition[C]//2019 12 th International Conference on Intelligent Computation Technology and Automation (ICICTA). Xiangtan, China. IEEE, 2019: 166-169. [22] 叶远波, 李端超, 谢民, 等. 基于知识图谱的二次设备测试自动配置方法[J]. 电力系统保护与控制, 2022, 50(12): 162–171 YE Yuanbo, LI Duanchao, XIE Min, et al. Automatic configuration method of secondary equipment test based on a knowledge graph[J]. Power System Protection and Control, 2022, 50(12): 162–171 [23] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar. Stroudsburg, PA, USA: Association for Computational Linguistics, 2014: 1746–1751. [24] 李志杰, 耿朝阳, 宋鹏. LSTM-TextCNN联合模型的短文本分类研究[J]. 西安工业大学学报, 2020, 40(3): 299–304 LI Zhijie, GENG Chaoyang, SONG Peng. Research on short text classification based on joint LSTM TextCNN model[J]. Journal of Xi'an Technological University, 2020, 40(3): 299–304 [25] ZHANG Q, ZHENG R R, ZHAO Z Y, et al. A TextCNN based approach for multi-label text classification of power fault data[C]//2020 IEEE 5 th International Conference on Cloud Computing and Big Data Analytics. Chengdu, China. IEEE, 2020: 179–183
|