[1] ZHAO H R, GUO S. Risk evaluation on UHV power transmission construction project based on AHP and FCE method[J]. Mathematical Problems in Engineering, 2014: 1–14. [2] 成立, 夏彦卫, 高树国, 等. 基于混合电场线性叠加原理的换流变压器内部电场分布规律研究[J]. 智慧电力, 2021, 49(1): 90–95 CHENG Li, XIA Yanwei, GAO Shuguo, et al. Effect of thermal aging on electric field distribution in converter transformer based on linear additive principle for mixed electric field[J]. Smart Power, 2021, 49(1): 90–95 [3] 赵科, 丁然, 李洪涛, 等. 基于热特性差异的GIL故障辨识研究[J]. 电力系统保护与控制, 2021, 49(4): 13–20 ZHAO Ke, DING Ran, LI Hongtao, et al. Research on GIL fault identification based on thermal characteristic difference[J]. Power System Protection and Control, 2021, 49(4): 13–20 [4] 孙鹏伟, 洪潮, 周保荣, 等. 大容量柔性直流分极接入电网方式及对控制保护系统的影响[J]. 南方电网技术, 2020, 14(10): 1–8 SUN Pengwei, HONG Chao, ZHOU Baorong, et al. Large capacity VSC-HVDC split-pole feeding into power grid and its impact on control and protection systems[J]. Southern Power System Technology, 2020, 14(10): 1–8 [5] ZHAO H R, LI N N. Risk evaluation of a UHV power transmission construction project based on a cloud model and FCE method for sustainability[J]. Sustainability, 2015, 7(3): 2885–2914. [6] 戴志辉, 王靖宇, 潘星宇, 等. 特高压交直流接入后电网断面潮流综合评价方法[J]. 电力系统保护与控制, 2020, 48(19): 65–72 DAI Zhihui, WANG Jingyu, PAN Xingyu, et al. A comprehensive power flow evaluation method for a transmission section with UHVAC/DC integration[J]. Power System Protection and Control, 2020, 48(19): 65–72 [7] 龙日尚, 张建华, 蒙园, 等. 严重灾害下特高压交直流电网风险评估方法[J]. 电网技术, 2017, 41(9): 2939–2946 LONG Rishang, ZHANG Jianhua, MENG Yuan, et al. Risk assessment method of UHV AC/DC power system in serious disasters[J]. Power System Technology, 2017, 41(9): 2939–2946 [8] 田书欣, 程浩忠, 常浩, 等. 特高压电网社会效益分析及评价方法[J]. 电力自动化设备, 2015, 35(2): 145–153 TIAN Shuxin, CHENG Haozhong, CHANG Hao, et al. Analysis and evaluation of social benefit from UHV power grid[J]. Electric Power Automation Equipment, 2015, 35(2): 145–153 [9] 张戈力. 基于费用效益法的特高压工程国民经济评价方法及实证[J]. 电力勘测设计, 2020(1): 74–80 ZHANG Geli. An national economic evaluation method of UHV project based on cost-benefit analysis and its empirical research[J]. Electric Power Survey & Design, 2020(1): 74–80 [10] 尚国伟. 特高压输电工程效益模糊层次综合评价研究[J]. 产业与科技论坛, 2014, 13(17): 38–40 [11] 韩柳, 庄博, 王智冬. 特高压电网技术经济指标与评价方法研究[J]. 华东电力, 2012, 40(7): 1099–1103 HAN Liu, ZHUANG Bo, WANG Zhidong. Technical and economic assessment methods and indexes for UHV power grid[J]. East China Electric Power, 2012, 40(7): 1099–1103 [12] 谭清坤. 特高压电网潜在效应分析与综合评价模型[D]. 北京: 华北电力大学(北京), 2016. TAN Qingkun. UHV grid potential effect analysis and comprehensive evaluation model[D]. Beijing: North China Electric Power University, 2016. [13] 张涛. 特高压输电线路工程施工管理后评价研究[D]. 北京: 华北电力大学(北京), 2019. ZHANG Tao. Post-evaluation research of construction management of UHV transmission line engineering[D]. Beijing: North China Electric Power University, 2019. [14] 游沛羽, 王晓辉, 张艳. 亚欧超远距离特高压输电经济性研究[J]. 电网技术, 2015, 39(8): 2087–2093 YOU Peiyu, WANG Xiaohui, ZHANG Yan. Economic research on Asia-Europe long-distance UHV power transmission[J]. Power System Technology, 2015, 39(8): 2087–2093 [15] 聂宏展, 吕盼, 乔怡, 等. 基于熵权法的输电网规划方案模糊综合评价[J]. 电网技术, 2009, 33(11): 60–64 NIE Hongzhan, LÜ Pan, QIAO Yi, et al. Comprehensive fuzzy evaluation for transmission network planning scheme based on entropy weight method[J]. Power System Technology, 2009, 33(11): 60–64 [16] 钱程, 穆文平, 王康, 等. 基于主成分分析的地下水水质模糊综合评价[J]. 水电能源科学, 2016, 34(11): 31–35 QIAN Cheng, MU Wenping, WANG Kang, et al. Fuzzy comprehensive evaluation of groundwater quality based on principal component analysis[J]. Water Resources and Power, 2016, 34(11): 31–35 [17] 李娟, 薛永端, 徐丙垠, 等. 基于层次分析的电力系统暂态模型评价方法[J]. 电网技术, 2013, 37(8): 2207–2211 LI Juan, XUE Yongduan, XU Bingyin, et al. An analytic hierarchy process based assessment method for power system transient models[J]. Power System Technology, 2013, 37(8): 2207–2211 [18] 梁杰, 侯志伟. AHP法专家调查法与神经网络相结合的综合定权方法[J]. 系统工程理论与实践, 2001, 21(3): 59–63 LIANG Jie, HOU Zhiwei. A synthetic weighting method of connecting AHP and Delphi with artificial neural networks[J]. Systems Engineering - Theory & Practice, 2001, 21(3): 59–63 [19] REZAEI J. Best-worst multi-criteria decision-making method[J]. Omega, 2015, 53: 49–57. [20] 李娜, 刘丽霞, 赵一航, 等. 基于模糊最优最劣和模糊综合评价方法的电网企业市场化业务竞争环境综合评估[J]. 智慧电力, 2019, 47(12): 59–65 LI Na, LIU Lixia, ZHAO Yihang, et al. Competitive environment assessment of market business of power grid corporation using fuzzy best-worst method and comprehensive evaluation method[J]. Smart Power, 2019, 47(12): 59–65 [21] MOHAMMADI M, REZAEI J. Bayesian best-worst method: a probabilistic group decision making model[J]. Omega, 2020, 96: 102075. [22] 罗毅, 李昱龙. 基于熵权法和灰色关联分析法的输电网规划方案综合决策[J]. 电网技术, 2013, 37(1): 77–81 LUO Yi, LI Yulong. Comprehensive decision-making of transmission network planning based on entropy weight and grey relational analysis[J]. Power System Technology, 2013, 37(1): 77–81 [23] 赵凤展, 王佳慧, 卫泽晨, 等. 利用改进G1-TOPSIS法的智能配电网层次化评价[J]. 电网技术, 2016, 40(10): 3169–3175 ZHAO Fengzhan, WANG Jiahui, WEI Zechen, et al. Hierarchical evaluation of smart distribution grid based on improved G1-TOPSIS method[J]. Power System Technology, 2016, 40(10): 3169–3175 [24] 李义超, 廖枝灵, 杜易成. 基于物元可拓模型的地方政府信用风险评估及对策[J]. 经济经纬, 2016, 33(4): 133–138 LI Yichao, LIAO Zhiling, DU Yicheng. Local government credit risk assessment and countermeasures based on element extension model[J]. Economic Survey, 2016, 33(4): 133–138 [25] 何玉钧, 刘毅, 周生平. 基于物元可拓模型的电力通信网风险评估[J]. 电力系统保护与控制, 2017, 45(14): 64–69 HE Yujun, LIU Yi, ZHOU Shengping. Risk evaluation for electric power communication network based on matter-element extensible model[J]. Power System Protection and Control, 2017, 45(14): 64–69 [26] 李泓泽, 郭森, 唐辉, 等. 基于改进变权物元可拓模型的电能质量综合评价[J]. 电网技术, 2013, 37(3): 653–659 LI Hongze, GUO Sen, TANG Hui, et al. Comprehensive evaluation on power quality based on improved matter-element extension model with variable weight[J]. Power System Technology, 2013, 37(3): 653–659 [27] 陈耀辉, 孙春燕. 模糊综合评判法中的最大隶属原则有效度[J]. 重庆师范学院学报(自然科学版), 2001, 18(1): 45–47 CHEN Yaohui, SUN Chunyan. A study of the validity of the maximum subordination principle for the fuzzy comprehensive evaluation method[J]. Journal of Chongqing Teachers College (Natural Science Edition), 2001, 18(1): 45–47
|