[1] CHENGWEI C, GANG L, JIAN L, et al. The study on evaluation model for water in silicone oil of cable termination and simulate experiment[C]//Conference Record of the 2008 IEEE International Symposium on Electrical Insulation. Vancouver, BC, Canada. IEEE, 2008: 712–715. [2] LIU G, LIU Y G, WANG C, et al. The study on evaluation model for prefabricated HV stress cone of cable terminations weakness based on finite element[C]//Conference Record of the 2006 IEEE International Symposium on Electrical Insulation. Toronto, ON, Canada. IEEE, 2006: 486–489. [3] 王彦伟, 魏成文, 戴静旭, 等. 轧管1344线高压电缆终端套管异常发热机理初探[J]. 高电压技术, 2004, 30(增刊1): 65–66,68 WANG Yanwei, WEI Chengwen, DAI Jingxu, et al. Pretest on the fever heat mechanism of the HV cable termination bushing[J]. High Voltage Engineering, 2004, 30(S1): 65–66,68 [4] 马超, 李宁, 李新平, 等. 基于红外热成像的电缆终端漏油缺陷检测机理分析[J]. 南方电网技术, 2021, 15(5): 58–63 MA Chao, LI Ning, LI Xinping, et al. Detection mechanism analysis of cable terminal with leakage fault based on infrared thermography[J]. Southern Power System Technology, 2021, 15(5): 58–63 [5] 张若兵, 郭国化, 邬钧, 等. 电弧对GIS终端绝缘硅油介电性能及起始放电的影响[J]. 高电压技术, 2018, 44(3): 733–739 ZHANG Ruobing, GUO Guohua, WU Jun, et al. Effects of electrical arc on dielectric properties and initial discharge patterns of silicone oil in GIS terminal[J]. High Voltage Engineering, 2018, 44(3): 733–739 [6] 罗真海, 陆国俊, 王晓兵, 等. 高压电缆瓷套式终端发热原因[J]. 高电压技术, 2007, 33(11): 240–241,244 [7] BERGIN E. Guidelines for maintaining the integrity of extruded cable accessories[M]//CIGRE Green Books. Cham: Springer International Publishing, 2021: 257–315. [8] 张静, 程林, 宋鹏先, 等. 基于硅油劣化特性对高压电缆终端热状态的测试分析[J]. 绝缘材料, 2020, 53(3): 89–93 ZHANG Jing, CHENG Lin, SONG Pengxian, et al. Analysis on thermal state of high voltage cable terminal based on silicone oil degradation characteristics[J]. Insulating Materials, 2020, 53(3): 89–93 [9] 徐涛. 基于电—热场仿真和红外检测的瓷套式电缆终端局部异常发热研究[D]. 广州: 华南理工大学, 2016. XU Tao. Study on local over-heat of porcelain type cable terminal based on electric-thermal field simulation and infrared detection[D]. Guangzhou: South China University of Technology, 2016. [10] STEVENS G C, HERMAN H, FREEBODY N, et al. Chemometrics in the study of liquid dielectrics[C]//2017 IEEE 19 th International Conference on Dielectric Liquids (ICDL). IEEE, 2017: 1–5. [11] 董明, 王丽, 吴雪舟, 等. 油纸绝缘介电响应检测技术研究现状与发展[J]. 高电压技术, 2016, 42(4): 1179–1189 DONG Ming, WANG Li, WU Xuezhou, et al. Status and progress in study of dielectric response technology for oil-paper insulation[J]. High Voltage Engineering, 2016, 42(4): 1179–1189 [12] 张寒, 胡伟, 许佐明, 等. 温度对环氧胶浸纸套管FDS特性的影响[J]. 中国电力, 2021, 54(10): 186–195 ZHANG Han, HU Wei, XU Zuoming, et al. Effect of temperature on FDS characteristics of resin impregnated paper bushing[J]. Electric Power, 2021, 54(10): 186–195 [13] 张大宁, 白帆, 牛朝滨, 等. 不同受潮类型下油纸绝缘套管的频域介电谱特性[J]. 中国电机工程学报, 2018, 38(16): 4942–4950,4998 ZHANG Daning, BAI Fan, NIU Chaobin, et al. Frequency domain spectroscopy characteristics of oil-paper insulated bushings under different damp types[J]. Proceedings of the CSEE, 2018, 38(16): 4942–4950,4998 [14] 王东阳, 周利军, 江俊飞, 等. 低频激励下油隙的电极极化建模与介电参数方程[J]. 中国电机工程学报, 2015, 35(22): 5950–5956 WANG Dongyang, ZHOU Lijun, JIANG Junfei, et al. Modeling the electrode polarization of oil gap under low frequency excitation and the expressions of dielectric parameters[J]. Proceedings of the CSEE, 2015, 35(22): 5950–5956 [15] 温福新, 董明, 任明, 等. 基于修正的Havriliak-Negami模型的SiO2纳米改性变压器油宽频介电弛豫特性[J]. 电工技术学报, 2016, 31(7): 166–172 WEN Fuxin, DONG Ming, REN Ming, et al. The broadband dielectric relaxation properties of the transformer oil based on SiO2 nanoparticles using modified Havriliak-Negami model[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 166–172 [16] 杨丽君, 徐积全, 胡恩德, 等. 绝缘油离子迁移率的测试及其特性分析[J]. 高电压技术, 2014, 40(10): 3260–3267 YANG Lijun, XU Jiquan, HU Ende, et al. Measurement of ion mobility of insulation oil and its properties analysis[J]. High Voltage Engineering, 2014, 40(10): 3260–3267 [17] 贾海峰, 刘骥, 张明泽, 等. 微水含量对老化后变压器油介电性能影响分析[J]. 哈尔滨理工大学学报, 2020, 25(6): 70–76 JIA Haifeng, LIU Ji, ZHANG Mingze, et al. Analysis of influence of moisture content on dielectric properties of transformer oil after aging[J]. Journal of Harbin University of Science and Technology, 2020, 25(6): 70–76 [18] ZHOU Y, HAO M, CHEN G, et al. Quantitative study of electric conduction in mineral oil by time domain and frequency domain measurement[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(5): 2601–2610. [19] FARAHANI M, BORSI H, GOCKENBACH E. Dielectric response studies on insulating system of high voltage rotating machines[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13(2): 383–393. [20] FOFANA I, HEMMATJOU H, MEGHNEFI F, et al. Low temperature and moisture effects on oil-paper insulation dielectric response in frequency Domain[C]//2009 IEEE Electrical Insulation Conference. Montreal, QC, Canada. IEEE, 2009: 368–372. [21] ÖFTERING H P, RUMPELT P, KÜCHLER A, et al. Time-dependent dielectric behavior of mineral oil under the influence of different DC voltage conditions[C]//2019 IEEE 20 th International Conference on Dielectric Liquids (ICDL). Roma, Italy. IEEE, 2019: 1–4. [22] 钟力生, 李盛涛, 徐传骧, 等. 工程电介质物理与介电现象[M]. 西安: 西安交通大学出版社, 2013: 138–157. [23] 冯圣玉. 有机硅高分子及其应用[M]. 北京: 化学工业出版社, 2004. [24] 张晨萌, 苏少春, 谢敏, 等. 基于矩阵束算法的XLPE电力电缆绝缘介质响应参数辨识[J]. 高电压技术, 2019, 45(5): 1647–1653 ZHANG Chenmeng, SU Shaochun, XIE Min, et al. Parameter identification for dielectric response of XLPE power cable based on matrix pencil algorithm[J]. High Voltage Engineering, 2019, 45(5): 1647–1653 [25] 杜伯学, 姜金鹏. 换流变压器油纸绝缘水分对局部放电行为的影响综述[J]. 高电压技术, 2021, 47(8): 2932–2945 DU Boxue, JIANG Jinpeng. Research progress on influence of water content of oil-paper insulation on partial discharge of converter transformer[J]. High Voltage Engineering, 2021, 47(8): 2932–2945 [26] ARAKELIAN V G, FOFANA I. Water in oil-Filled, high-voltage equipment, part I: states, solubility, and equilibrium in insulating materials[J]. IEEE Electrical Insulation Magazine, 2007, 23(4): 15–27.
|