[1] 马永其, 程昌钧, 徐操. 结构形式及材料性能对220 kV电缆终端应力锥的影响[J]. 中国电力, 2006, 39(4): 38–42 MA Yongqi, CHENG Changjun, XU Cao. Influnce of stucture shape and rubber property on 220 kV cable terminal stress cone[J]. Electric Power, 2006, 39(4): 38–42 [2] 敖明. 户外干式空心电抗器表面树枝状放电试验研究[J]. 中国电力, 2000, 33(3): 39–41 AO Ming. Test of tree discharge on surface of dry-type air-core reactors[J]. Electric Power, 2000, 33(3): 39–41 [3] 申巍, 高华, 张鹏, 等. 高聚物复合绝缘子紫外老化性能研究[J]. 中国电力, 2019, 52(9): 73–78,85 SHEN Wei, GAO Hua, ZHANG Peng, et al. Study on UV aging properties of polymer composite insulators[J]. Electric Power, 2019, 52(9): 73–78,85 [4] DU F P, YANG W, ZHANG F, et al. Enhancing the heat transfer efficiency in graphene-epoxy nanocomposites using a magnesium oxide-graphene hybrid structure[J]. ACS Applied Materials & Interfaces, 2015, 7(26): 14397–14403. [5] 陈赟. 氧化铝/环氧树脂复合绝缘材料制备与应用性能研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2017. CHEN (Bin| Yun). Study on the preparation and insulating properties of epoxy/alumina nanocomposites[D]. Beijing: University of Chinese Academy of Sciences, 2017. [6] 程显, 李文博, 陈硕, 等. 纳米SiO2/Al2O3复合改性对环氧树脂绝缘性能的影响[J]. 高分子材料科学与工程, 2020, 36(11): 86–92 CHENG Xian, LI Wenbo, CHEN Shuo, et al. Effect of nano-SiO2/Al2O3 on the insulation properties of epoxy resin[J]. Polymer Materials Science & Engineering, 2020, 36(11): 86–92 [7] 何毅, 钟菲, 廖欣桐, 等. 多壁碳纳米管/环氧复合涂层的制备及性能研究[J]. 涂料工业, 2014, 44(6): 7–13 HE Yi, ZHONG Fei, LIAO Xintong, et al. Preparation and property of multi-walled carbon nanotubes/epoxy composite coating[J]. Paint & Coatings Industry, 2014, 44(6): 7–13 [8] 李卫国, 张暖, 杨亚奇. 环氧树脂纳米复合电介质电气性能研究进展[J]. 科学技术与工程, 2019, 19(2): 11–18 LI Weiguo, ZHANG Nuan, YANG Yaqi. Research progress on electrical insulation properties of epoxy nanocomposite[J]. Science Technology and Engineering, 2019, 19(2): 11–18 [9] 刘衍, 周求宽, 赵晶轩, 等. 纳米MgO/环氧树脂复合电介质的介电性能研究[J]. 绝缘材料, 2017, 50(3): 10–15 LIU Yan, ZHOU Qiukuan, ZHAO Jingxuan, et al. Dielectric properties of nano-MgO/epoxy resin composites[J]. Insulating Materials, 2017, 50(3): 10–15 [10] 王诗成. 纳米SiO2/环氧树脂复合电介质介电特性研究[D]. 西安: 西安理工大学, 2016. WANG Shicheng. Electric property of nano-SiO2/EP composites[D]. Xi'an: Xi'an University of Technology, 2016. [11] 王玉, 高延敏, 韩莲, 等. 偶联剂改性氧化石墨烯/环氧树脂复合材料的研究[J]. 现代塑料加工应用, 2015, 27(5): 44–48 WANG Yu, GAO Yanmin, HAN Lian, et al. Study on coupling agent-modified graphene oxide/epoxy resin composites[J]. Modern Plastics Processing and Applications, 2015, 27(5): 44–48 [12] ANDRITSCH T, KOCHETOV R, MORSHUIS P H F, et al. Dielectric properties and space charge behavior of MgO-epoxy nanocomposites[C]//2010 10th IEEE International Conference on Solid Dielectrics. Potsdam, Germany. IEEE, 2010: 1–4. [13] ZHANG J B, QIU M, ZHANG H J, et al. Dielectric properties of MgO/Epoxy nanocomposites in liquid nitrogen environment[J]. IOP Conference Series:Materials Science and Engineering, 2018, 423: 012067. [14] KOCHETOV R, ANDRITSCH T, MORSHUIS P H F, et al. Impact of postcuring and water absorption on the dielectric response of epoxy-based composites filled with MgO nanoparticles[C]//2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. Cancun, Mexico. IEEE, 2011: 342–345. [15] MEKHEMER G A H, HALAWY S A, MOHAMED M A, et al. Qualitative and quantitative assessments of acid and base sites exposed on polycrystalline MgO surfaces: ? thermogravimetric, calorimetric, and in situ FTIR spectroscopic study combination[J]. The Journal of Physical Chemistry B, 2004, 108(35): 13379–13386. [16] VILLEGAS J P, MONCAYO-RIASCOS I, GALEANO-CARO D, et al. Functionalization of γ-alumina and magnesia nanoparticles with a fluorocarbon surfactant to promote ultra-gas-wet surfaces: experimental and theoretical approach[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 13510–13520. [17] 侯成敏, 李娜, 董海涛, 等. 含氟环氧树脂杂化纳米二氧化硅超疏水材料的制备与性能[J]. 应用化学, 2019, 36(7): 798–806 HOU Chengmin, LI Na, DONG Haitao, et al. Preparation and performance of hybrid superhydrophobic materials from fluorinated epoxy resin and silica nanoparticles[J]. Chinese Journal of Applied Chemistry, 2019, 36(7): 798–806 [18] 柳杨春, 徐丽慧, 万晶, 等. 超疏水导电材料的制备及应用研究进展[J]. 功能材料, 2020, 51(11): 11089–11095 LIU Yangchun, XU Lihui, WAN Jing, et al. Research progress on preparation and application of superhydrophobic conductive materials[J]. Journal of Functional Materials, 2020, 51(11): 11089–11095 [19] 杨璐璐, 宿倩雪, 狄凯莹, 等. 水性环氧树脂/纳米SiO2复合疏水涂层的制备及性能研究[J]. 涂料工业, 2019, 49(9): 41–45,53 YANG Lulu, SU Qianxue, DI Kaiying, et al. Preparation and properties of waterborne epoxy resin/nano-SiO2 composite hydrophobic coatings[J]. Paint & Coatings Industry, 2019, 49(9): 41–45,53 [20] 张德虎, 邓佳明, 薛珊珊, 等. 二氧化硅/环氧树脂/硅橡胶超疏水涂层的制备及其性能研究[J]. 塑料工业, 2020, 48(11): 170–173 ZHANG Dehu, DENG Jiaming, XUE Shanshan, et al. Preparation and study of silica/epoxy resin/silicon rubber multiphase superhydrophobic coating[J]. China Plastics Industry, 2020, 48(11): 170–173 [21] 黄慧红,陈俊,顾乐,等. 环境友好型固体绝缘材料研究进展[J]. 南方电网技术, 2021, 15(6): 49–55 HUANG Huihong, CHEN Jun, GU Le, et al. Research status of environmentally friendly solid insulation material[J]. Southern Power System Technology, 2021, 15(6): 49–55 [22] 徐兴全,胡则剑,齐伟强,等. 水分对XLPE与LSR介电性能的影响[J]. 南方电网技术, 2019, 13(6): 70–75 XU Xingquan, HU Zejian, QI Weiqiang, et al. Effect of moisture on the dielectric properties of XLPE and LSR[J]. Southern Power System Technology, 2019, 13(6): 70–75 [23] 张楚岩,杨松澎,廖一帆,等. 纳米改性聚丙烯复合绝缘材料性能研究Ⅰ—在交流电场下的击穿特性[J]. 南方电网技术, 2021, 15(1): 41–47 ZHANG Chuyan, YANG Songpeng, LIAO Yifan, et al. Research on the properties of nano-modified polypropylene composite insulating materialsⅠ—breakdown characteristics under AC electric field[J]. Southern Power System Technology, 2021, 15(1): 41–47 [24] 段华锋, 王少辉, 侯彩英, 等. 环氧基团修饰多壁碳纳米管及其化学交联聚氨酯复合材料的性能[J]. 功能材料, 2019, 50(6): 6155–6161 DUAN Huafeng, WANG Shaohui, HOU Caiying, et al. Properties of epoxy modified multi-walled carbon nanotubes and their chemically cross-linked polyurethane composites[J]. Journal of Functional Materials, 2019, 50(6): 6155–6161
|