[1] 吴桂芳, 袁春峰, 陆家榆, 等. 特高压直流线路与交流线路同走廊时混合电磁环境的计算[J]. 电网技术, 2010, 34(2): 14–19 WU Guifang, YUAN Chunfeng, LU Jiayu, et al. Calculation on electromagnetic environment of UHVDC and EHVAC transmission lines erected in a common corridor[J]. Power System Technology, 2010, 34(2): 14–19 [2] 刘丽娜, 陶加祥, 张业茂, 等. 特高压交流示范工程输电线路电磁环境实测分析[J]. 中国电力, 2017, 50(10): 46–51 LIU Lina, TAO Jiaxiang, ZHANG Yemao, et al. Onsite measurement and analysis of transmission line electromagnetic environment for UHV AC demonstration project[J]. Electric Power, 2017, 50(10): 46–51 [3] 刘丽娜, 陶加祥, 万健, 等. 悬浮导体感应电压的估算及对策[J]. 中国电力, 2017, 50(11): 127–133 LIU Lina, TAO Jiaxiang, WAN Jian, et al. Estimation and countermeasures of floating conductor induced voltage[J]. Electric Power, 2017, 50(11): 127–133 [4] 厉天威, 阮江军, 吴田. 并行计算高压输电线路周围电场[J]. 电工技术学报, 2009, 24(7): 1–6 LI Tianwei, RUAN Jiangjun, WU Tian. Parallel computation of electric field intensity nearby high voltage transmission lines[J]. Transactions of China Electro-technical Society, 2009, 24(7): 1–6 [5] 吴桂芳, 陆家榆, 邵方殷. 特高压等级输电的电磁环境研究[J]. 中国电力, 2005, 38(6): 24–27 WU Guifang, LU Jiayu, SHAO Fangyin. Research on electromagnetic environment of the next voltage level of transmission system in China[J]. Electric Power, 2005, 38(6): 24–27 [6] 邵方殷. 我国特高压输电线路的相导线布置和工频电磁环境[J]. 电网技术, 2005, 29(8): 1–7 SHAO Fangyin. Phase conduct or configuration and power frequency electromagnetic environment of UHV transmission line in China[J]. Power System Technology, 2005, 29(8): 1–7 [7] 乔骥, 邹军, 鄂天龙, 等. 有屏蔽线时特高压直流输电线路地面电场与离子流场计算与分析[J]. 电网技术, 2017, 41(7): 2386–2392 QIAO Ji, ZOU Jun, E Tianlong, et al. Calculation of ground-level electric field and ion flow of HVDC transmission lines with shield wires[J]. Power System Technology, 2017, 41(7): 2386–2392 [8] 杨扬, 陆家榆, 杨勇. 基于上流有限元法的同走廊两回±800 kV直流线路地面合成电场计算[J]. 电网技术, 2012, 36(4): 22–27 YANG Yang, LU Jiayu, YANG Yong. Calculation of total electric field at the ground level under double-circuit ±800 kV DC transmission lines arranged on same corridor with upstream FEM method[J]. Power System Technology, 2012, 36(4): 22–27 [9] 黄道春, 阮江军, 张宇, 等. 紧凑型输电线异型分裂导线周围工频电场研究[J]. 高电压技术, 2006, 32(4): 55–57 HUANG Daochun, RUAN Jiangjun, ZHANG Yu, et al. Research on the power frequency electric field around unsymmetrical sub-conductor configuration of compact transmission lines[J]. High Voltage Engineering, 2006, 32(4): 55–57 [10] 赵康伟,张超,彭珑,等. 平行线路在特高压线路上产生的感应电压和电流研究[J]. 中国电力, 2017, 50(2): 46–51 ZHAO Kangwei, ZHANG Chao, PENG Long, et al. Research on induced voltage and current of UHV circuits produced by parallel lines[J]. Electric Power, 2017, 50(2): 46–51 [11] 赵宇明, 刘磊, 张华赢, 等. 特高压直流线路电磁环境指标计算及测量[J]. 南方电网技术, 2011, 5(3): 1–5 ZHAO Yuming, LIU Lei, ZHANG Huaying, et al. Calculation and measurement of electromagnetic environment parameters of UHVDC transmission lines[J]. Southern Power System Technology, 2011, 5(3): 1–5 [12] 万保权, 邬雄, 张业茂, 等. 750 kV单回紧凑型输电线路的电磁环境[J]. 高电压技术, 2009, 35(3): 597–600 WAN Baoquan, WU Xiong, ZHANG Yemao, et al. Electromagnetic environment of 750 kV single-circuit compact transmission lines[J]. High Voltage Engineering, 2009, 35(3): 597–600 [13] 王小凤, 周浩. ±800 kV特高压直流输电线路的电磁环境研究[J]. 高压电器, 2007, 43(2): 109–112 WANG Xiaofeng, ZHOU Hao. Electromagnetic environmental effect of ±800 kV UHVDC transmission lines[J]. High Voltage Apparatus, 2007, 43(2): 109–112 [14] 李敏, 余占清, 曾嵘, 等. 高海拔±800 kV直流输电线路电磁环境测量[J]. 南方电网技术, 2011, 5(1): 42–45 LI Min, YU Zhanqing, ZENG Rong, et al. Electromagnetic environment measurement of ±800 kV DC transmission lines at high altitude[J]. Southern Power System Technology, 2011, 5(1): 42–45 [15] 吴高波, 李健, 陈媛, 等. ±800 kV与±500 kV同塔双回直流输电线路电磁环境研究[J]. 电网技术, 2015, 39(9): 2532–2538 WU Gaobo, LI Jian, CHEN Yuan, et al. Research on electromagnetic environment of ±800 kV and ±500 kV double circuit DC transmission lines on the same tower[J]. Power System Technology, 2015, 39(9): 2532–2538 [16] 杨滔, 赵克江, 刘渝根, 等. 屏蔽线改善架空输电线路工频电场分布研究[J]. 高压电器, 2013, 49(3): 91–98 YANG Tao, ZHAO Kejiang, LIU Yugen, et al. Improving power frequency electric field distribution of transmission lines by shielding lines[J]. High Voltage Apparatus, 2013, 49(3): 91–98 [17] 梅贞, 陈水明, 马锋, 等. 高压输电线附近室内电磁环境与屏蔽效果[J]. 高电压技术, 2008, 34(1): 60–63 MEI Zhen, CHEN Shuiming, MA Feng, et al. Electromagnetic field in home near high voltage transmission line and shielding efficiency of structure[J]. High Voltage Engineering, 2008, 34(1): 60–63 [18] 王凯, 许彬, 刘刚, 等. 屏蔽线降低220 kV输电线路附近民居超标工频电场的效果分析[J]. 高压电器, 2013, 49(5): 44–48 WANG Kai, XU Bin, LIU Gang, et al. Effect analysis on reducing the excessive power frequency electric field near buildings close to transmission line of 220 kV by using shielding conductors[J]. High Voltage Apparatus, 2013, 49(5): 44–48 [19] 刘刚, 许彬, 季严飞, 等. 220 kV 输电线路近区建筑物工频电场抑制措施[J]. 高电压技术, 2011, 37(12): 2904–2910 LIU Gang, XU Bin, JI Yanfei, et al. Control of power frequency electric field near building close to 220 kV transmission line[J]. High Voltage Engineering, 2011, 37(12): 2904–2910 [20] 李永明, 何健, 徐禄文, 等. 超高压输电线路下工频电场抑制方法的研究[J]. 高压电器, 2009, 45(4): 47–51 LI Yongming, HE Jian, XU Luwen, et al. Research on suppression of power frequency electric field due to EHV transmission lines[J]. High Voltage Apparatus, 2009, 45(4): 47–51 [21] 路遥, 邬雄, 万保权, 等. 交流特高压线路下电场强度的改善[J]. 高电压技术, 2006, 32(12): 66–68 LU Yao, WU Xiong, WAN Baoquan, et al. Study on the measurement of reducing electric field intensity under UHV transmission lines[J]. High Voltage Engineering, 2006, 32(12): 66–68 [22] YIN H, ZHANG B, HE J, et al. Restriction of ion-flow field under HVDC transmission line by installing shield wire[J]. IEEE Transactions on Power Delivery, 2013, 28(28): 1890–1898. [23] 汪逍旻, 许彬, 刘刚, 等. 用屏蔽线降低220 kV线路附近建筑物的工频电场[J]. 华东电力, 2011, 39(12): 2017–2020 WANG Xiaomin, XU Bin, LIU Gang, et al. Power frequency electric field reduction with shielding wires for buildings near 220 kV transmission lines[J]. East China Electric Power, 2011, 39(12): 2017–2020 [24] 孟毓, 张永隆, 肖鑫鑫. 上海地区典型220 kV架空线线下场强的研究[J]. 电网技术, 2010, 34(6): 38–43 MENG Yu, ZHANG Yonglong, XIAO Xinxin. Research on electric field strength below typical 220 kV overhead transmission lines in Shanghai region[J]. Power System Technology, 2010, 34(6): 38–43
|