[1] 卜银坤. 煤仓底部活化振动给煤机的应用研究[J]. 中国电力,2013,46(10):13-17. BU Yinkun. Study on application of activation vibration coal feeder at the bottom of coal bunker[J]. Electric Power, 2013, 46(10): 13-17. [2] 宋凤莲. 浓相正压流态化仓泵气力除灰系统计算模型[J]. 中国电力,2011,44(4):59-62. SONG Fenglian. A computational model of ash removal process for dense-phase pneumatic pump conveying[J]. Electric Power,2011, 44(4): 59-62. [3] 刘建国,冯培良,陈辉,等. 正压制粉系统煤仓下煤不畅的治理[J]. 中国电力,2010,43(5):51-54. LIU Jianguo, FENG Peiliang, CHEN Hui, et al. Elimination of the unsmooth coal drop from coal bunker under positive pressure of coal pulverizing system [J]. Electric Power, 2010, 43(5): 51-54. [4] RICHARD P, NICODEMI M, DELANNAY R, et al. Slow relaxation and compaction of granular systems[J]. Nature Materials, 2005, 4(2): 121-128. [5] JENKINS JT, SAVAGE SB. A theory for the rapid flow of identical, smooth, nearly elastic, spherical-particles [J]. Journal of Fluid Mechanics, 1983, 130: 187-202. [6] JAEGER HM, NAGEL SR, BEHRIGER RP. Granular solids, liquids, and gases[J]. Reviews of Modern Physics, 1996, 68(4): 1259-1273. [7] GOLDHIRSH I. Rapid granular flows [J]. Annual Review of Fluid Mechanics, 2003, 35: 267-293. [8] FAYED ME, OTTEN L. Handbook of powder science and technology [M]. 2nd Edition ed. Chapman & Hall, 1997. [9] PUDASAINI SP, HUTTER K. Avalanche dynamics: dynamics of rapid flows of dense granular avalanches[M]. New York: Springer, 2007. [10] CUNDALL PA, STRACK ODL. Discrete numerical-model for granular assemblies [J]. Geotechnique, 1979, 29(1): 47-65. [11] GUI N, FAN J. Numerical simulation of motion of rigid spherical particles in a rotating tumbler with an inner wavelike surface [J]. Powder Technology, 2009, 192(2): 234-241. [12] HOOMANS BPB, KUIPERS JAM, BRIELSWJ, et al. Discrete particle simulation of bubble and slug formation in a two- dimensional gas-fluidised bed: A hard-sphere approach [J]. Chemical Engineering Science, 1996, 51(1): 99-118. [13] Wu CL, ZHAN JM, LAM KS, et al. Dense particulate flow model on unstructured mesh[J]. Chemical Engineering Science, 2006, 61(17): 5726-5741. [14] Wu CL, BERROUK AS, NANDAKUMAR K. Three-dimensional discrete particle model for gas-solid fluidized beds on unstructured mesh [J]. Chemical Engineering Journal, 2009, 152(2-3): 514-529. [15] DEEN NG, ANNALAND S, VAN M, et al. Review of discrete particle modeling of fluidized beds[J]. Chemical Engineering Science, 2007, 62(1-2): 28-44. [16] MCNAMARA S, YOUNG WR. Inelastic collapse and clumping in a one-dimensional granular medium[J]. Physics of Fluids a-Fluid Dynamics, 1992, 4(3): 496-504. [17] ZHU HP, ZHOU ZY, YANG RY, et al. Discrete particle simulation of particulate systems: Theoretical developments [J]. Chemical Engineering Science, 2007, 62(13): 3378-3396. [18] HERTZ H. ber die berührung fester elastischer Krper [J]. Journal für die Reine und Angewandte Mathematik, 1881, 92: 156-171. [19] MINDLIN RD, DERESIEWICZ H. Elastic spheres in contact under varying oblique forces[J]. Journal of Applied Mechanics- Transactions of the Asme, 1953, 20(3): 327-344. [20] WALTON OR, BRAUN RL. Viscosity antigranulocytes- temperature, and stress calculations for shearing assemblies of inelastic, frictional disks[J]. Journal of Rheology, 1986, 30(5): 949-980. [21] THORNTON C, YIN KK. Impact of elastic spheres with and without adhesion [J]. Powder Technology, 1991, 65(1-3): 153-166. [22] LANGSTON PA, TUZUN U, HEYES DM. Discrete element simulation of granular flow in 2D and 3D hoppers-dependence of discharge rate and wall stress on particle interactions [J]. Chemical Engineering Science, 1995, 50(6): 967-987. [23] LANGSTONPA, TUZUN U, HEYESDM. Discrete element simulation of internal-stress and flow-fields in funnel flow hoppers [J]. Powder Technology, 1995, 85(2): 153-169. [24] ZHOU YC, WRIGHT BD, YANG RY, et al. Rolling friction in the dynamic simulation of sandpile formation[J]. Physica A, 1999, 269(2-4): 536-553. [25] ZHU HP, YU AB. Averaging method of granular materials [J]. Physical Review E, 2002, 66(2): 021302. [26] ZHU HP, YU AB. Micromechanic modeling and analysis of unsteady-state granular flow in a cylindrical hopper [J]. Journal of Engineering Mathematics, 2005, 52(1): 307-320. [27] ZHU HP, YU AB. The effects of wall and rolling resistance on the couple stress of granular materials in vertical flow [J]. Physica a-Statistical Mechanics and Its Applications, 2003, 325(3-4): 347-360. [28] KONDIC L, Dynamics of spherical particles on a surface: Collision-induced sliding and other effects[J]. Physical Review E,1999, 60(1): 751-770. [29] IWASHITA K,ODAM, Micro-deformation mechanism of shear banding process based on modified distinct element method [J]. Powder Technology, 2000, 109(1-3): 192-205. [30] ZHU HP, YUAB. A theoretical analysis of the force models in discrete element method[J]. Powder Technology, 2006, 161(2): 122-129. [31] GOLDENBERG C, GOLDHIRSCHI, Friction enhances elasticity in granular solids [J]. Nature, 2005, 435(7039): 188-191. [32] LANGSTONPA, TUZUNU, HEYES DM. Distinct element simulation of interstitial air effects in axially symmetric granular flows hoppers[J]. Chemical Engineering Science, 1996, 51(6): 873-891. [33] ZHU HP, YU AB. Steady-state granular flow in a three- dimensional cylindrical hopper with flat bottom: microscopic analysis [J]. Journal of Physics D-Applied Physics, 2004, 37(10): 1497-1508. [34] WALTON OR. Numerical-simulation of inclined chute flows of monodisperse, inelastic, frictional spheres[J]. Mechanics of Materials, 1993, 16(1-2): 239-247. [35] IWASHITA K, ODAM. Rolling resistance at contacts in simulation of shear band development by DEM [J]. Journal of Engineering Mechanics-Asce, 1998, 124(3): 285-292. [36] ZHOU YC, YUAB, STEWART RL, et al. Microdynamic analysis of the particle flow in a cylindrical bladed mixer [J]. Chemical Engineering Science, 2004, 59(6): 1343-1364. [37] BERTRAND F, LECLAIRELA, LEVECQUE G. DEM-based models for the mixing of granular materials[J]. Chemical Engineering Science, 2005, 60(8-9): 2517-2531. [38] FAVIER JF, ABBASPOUR-FARDMH, KREMMERM. Modeling nonspherical particles using multisphere discrete elements [J]. Journal of Engineering Mechanics-Asce, 2001, 127(10): 971-977. [39] LANGSTON PA, AL-AWAMLEH MA, FRAIGE FY, et al. Distinct element modelling of non-spherical frictionless particle flow [J]. Chemical Engineering Science, 2004, 59(2): 425-435. [40] MUNJIZA A, LATHAMJP, JOHNNWM. 3D dynamics of discrete element systems comprising irregular discrete elements- integration solution for finite rotations in 3D[J]. International Journal for Numerical Methods in Engineering, 2003, 56(1): 35-55. [41] ISRAELACHVILI JN, ed. Intermolevular and surface forces with applications to colloidal and biological systems[M]. Orlando, Fla: Academie Press, 1985. [42] ISRAELACHVILI JN, ed. Intermolecular and surface forces [M]. 1991, Academic Press: London. [43] KRUPP H. Particle adhesion theory and experiment [J]. Advanced in Colloid and Interface Science, 1967, 1(2): 111-239. [44] FISHER RA. On the capillary forces in an ideal soil, correction of formulate given by W.B. Haines [J]. Journal of Agricultural Science, 1926, 16(3): 492-505.43. [45] ROTTER JM, HOLST JMFG, SANAD AM. Silo pressure predictions using discrete-element and finite-element analyses[J]. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 1998, 356(3): 2685-2712. [46] MIDI GDR. On dense granular flows[J]. European Physical Journal E, 2004, 14(4): 341-365. [47] XIABS, ZHU HP, YUAB, et al. DEM simulation of granular flow in a 3D cuboid hopper [C]// 6th International Conference for Conveying and Handling of Particulate Solids. 2009: 136-141. [48] ZHU HP, YUAB, WUYH. Numerical investigation of steady and unsteady state hopper flows[J]. Powder Technology, 2006, 170(3): 125-134. |